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ABSTRACT

Pressure to address the adverse environmental impact and issues of

sustainability associated with the use of petroleum has resulted in the commercial

development of biodiesel as a diesel replacement. The transesterification of fatty

acids, which is used industrially in the production of biodiesel, also produces

approximately 10 wt% glycerol as a major bi-product, rendering industrial

synthesis of glycerol obsolete and causing its market value to drop significantly.

The need to process the waste glycerol and value add to reduce the overall costs

associated with biodiesel production has dramatically increased research into the

use of glycerol as a platform chemical. There is also the opportunity to utilise solid

oxide fuel cells to process this waste to produce energy through highly efficient

electrochemical reactions.

This research examines the potential for using glycerol as a fuel, either through

direct oxidation or pre-reforming, in a solid oxide fuel cell. In this instance, a cell

consisting of a nickel-based anode, 150 m scandia-doped zirconia electrolyte

and LSM cathode sourced from Fuel Cell Materials was used to examine potential

feed streams, with an indigenous dynamic load cell used to evaluate

performance.

Glycerol has been identified as a potential solid oxide fuel cell feed owing to the

presence of hydroxyl functional groups which are hypothesised to inhibit coke

formation. Glycerol itself was shown to be a viable fuel feed for direct oxidation in

solid oxide fuel cells, with reasonable power densities and minimal deactivation

identified. Potential pre-reforming products were also examined as a feed,
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including synthesis gas, acrolein and allyl alcohol, with the later species used in

conjunction with a H2O/D2O isotope study and C3 mono-ol/diol study to

investigate the interactions of OH species.

It was found that hydroxyl species play an important role in anode surface

chemistry, facilitating a transfer reaction from the anode to electrolyte for

electrochemical oxidation, which through the use of isotopes was highlighted as

a potential rate limiting process. It was also shown that oxygenated hydrocarbons

are less likely to deactivate the anode via coke formation, with increasing the

number of hydroxyl inhibiting carbonisation. The importance of hydroxyl

interactions was seen in comparisons to similar molecules acrolein and allyl

alcohol, common derivatives of glycerol, where it was found the hydroxyl

containing allyl alcohol was directly oxidised on the anode surface while the

carbonyl of the acrolein resulted in rapid carbon formation and anode

deactivation.

The highly oxygenated nature of glycerol also allows it to be utilised as a solid

oxide fuel cell feed, where it was found that when fed into the anode chamber the

fuel would oxidise (as opposed to internal reforming) without significant

deactivation for over 90 hours operation. Industrial production of glycerol results

in a number of potential impurities, in particular salts formed from the

homogeneously catalysed transesterification reaction. It was identified that

selection of these catalysts based on the salts produced (or modifications to

heterogenous catalysis) needs to be considered, with the presence of sodium

chloride resulting in the formation of nickel chloride on the anode surface causing

anode deactivation.
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